Comparing MFCC and MPEG-7 audio features for feature extraction, maximum likelihood HMM and entropic prior HMM for sports audio classification
نویسندگان
چکیده
We present a comparison of 6 methods for classification of sports audio. For the feature extraction we have two choices: MPEG-7 audio features and Mel-scale Frequency Cepstrum Coefficients(MFCC). For the classification we also have two choices: Maximum Likelihood Hidden Markov Models(ML-HMM) and Entropic Prior HMM(EP-HMM). EP-HMM, in turn, have two variations: with and without trimming of the model parameters. We thus have 6 possible methods, each of which corresponds to a combination. Our results show that all the combinations achieve classification accuracy of around 90% with the best and the second best being MPEG-7 features with EP-HMM and MFCC with ML-HMM.
منابع مشابه
Comparing MFCC and MPEG-7 Audio Features for Feature Extraaction, Maximum Likelihood HMM and Entropic Prior HMM for Sports Audio Classification
We present a comparison of 6 methods for classification of sports audio. For the feature extraction we have two choices: MPEG-7 audio features and Mel-scale Frequency Cepstrum Coefficients (MFCC). For the classificaiton we also have two choices: Maximum Likelihood Hidden Markov Models (ML-HMM) and Entropic Prior HMM(EP-HMM). EP-HMM, in turn, have two variations: with and without trimming of the...
متن کاملAudio events detection based highlights extraction from baseball, golf and soccer games in a unified framework
We developed a unified framework to extract highlights from three sports: baseball, golf and soccer by detecting some of the common audio events that are directly indicative of highlights. We used MPEG-7 audio features and entropic prior Hidden Markov Models(HMM) as the audio features and classifier respectively to recognize these common audio events. Together with preand post-processing techni...
متن کاملComparison of MPEG-7 basis projection features and MFCC applied to robust speaker recognition
Our purpose is to evaluate the efficiency of MPEG-7 basis projection (BP) features vs. Mel-scale Frequency Cepstrum Coefficients (MFCC) for speaker recognition in noisy environments. The MPEG-7 feature extraction mainly consists of a Normalized Audio Spectrum Envelope (NASE), a basis decomposition algorithm and a spectrum basis projection. Prior to the feature extraction the noise reduction alg...
متن کاملNoise Diagnostics of Scooter Faults by Using MPEG-7 Audio Features and Intelligent Classification Techniques
A scooter fault diagnostic system that makes use of feature extraction and intelligent classification algorithms is presented in this paper. Sound features based on MPEG (Moving Picture Experts Group)-7 coding standard and several other features in the time and frequency domains are extracted from noise data and preprocessed prior to classification. Classification algorithms including the Neare...
متن کاملDetection of goal events in soccer videos
In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio featur...
متن کامل